The upper bound on k-tuple domination numbers of graphs

نویسنده

  • Gerard J. Chang
چکیده

In a graph G, a vertex is said to dominate itself and all vertices adjacent to it. For a positive integer k, the k-tuple domination number γ×k(G) of G is the minimum size of a subset D of V (G) such that every vertex in G is dominated by at least k vertices in D. To generalize/improve known upper bounds for the k-tuple domination number, this paper establishes that for any positive integer k and any graph G of n vertices and minimum degree δ: γ×k(G) ≤ ln(δ − k + 2) + ln d̃k−1 + 1 δ − k + 2 n, where d̃m = 1 n ∑n i=1 (di+1 m ) with di the degree of the ith vertex of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roman k-Tuple Domination in Graphs

For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$‎, ‎we define a‎ ‎function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating‎ ‎function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least‎ ‎$k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$‎. ‎The minimum weight of a Roman $k$-tuple dominatin...

متن کامل

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

k-TUPLE DOMATIC IN GRAPHS

For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...

متن کامل

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

On the total k-domination number of graphs

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ×k(G) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V , |NG[v]∩S| ≥ k. Also the total k-domination number γ×k,t(G) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V , |NG(v)∩S| ≥ k. The k-transversal numb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008